Total No. of Printed Pages—8 2 SEM TDC ECOH (CBCS) C 4

2022 (June/July)

ECONOMICS

(Core)

Paper : C-4

(Mathematical Methods in Economics-II)

Full Marks : 80 Pass Marks : 32

Time : 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following : 1×8=8
 - (a) Which of the following is a first-order difference equation?

(i)
$$\frac{dy}{dx} + ay = b$$

(ii)
$$\frac{d^2y}{dx^2} + ay = b$$

- (iii) $y_{t+1} + ay_t = c$
- (iv) All of the above

22P/1356

-

(Turn Over)

(3)

(e) Th

- The CES production function represents
- (i) increasing returns to scale
- (ii) diminishing returns to scale
- (iii) constant returns to scale
- (iv) All of the above
- (f) A discriminating monopolist maximizes his profit by selling quantity of products Q_1 and Q_2 in two sub-markets, market I and market II respectively, when

(i)	dC _	δR	δR
	$\overline{d0}$	δQ_1	δQ_2

(ii)
$$MC = AR_1 = AR_2$$

- (iii) $MR_1 = MR_2 = AC$
- (iv) None of the above

(g) Under perfect competition, a firm attains equilibrium when its

(i)
$$\frac{dC}{dQ} = \frac{dR}{dQ}$$

(ii) $\frac{d^2C}{dQ^2} = +ve$

(iii)
$$\frac{d\pi}{dQ} = 0$$
 and $\frac{d^2\pi}{dQ^2} = -vc$

(iv) All of the above

22P/1356

(Turn Over)

(h) The budget constraint for a consumer consuming two goods x and y with his money income M, given the price of $x(P_x)$ and price of $y(P_y)$ is expressed as

(i)
$$\frac{MU_x}{P_x} = \frac{MU_y}{P_y}$$

(ii)
$$XP_x + YP_y \leq M$$

- (iii) $XP_x + YP_y \ge M$
- (iv) None of the above
- **2.** Answer any four of the following : $4 \times 4 = 16$
 - (a) Explain the rank of a matrix with the help of an example.
 - (b) Explain the properties of CES production function.

(c) If
$$z = x^3 e^{2y}$$
, then find $\frac{\delta z}{\delta x}$ and $\frac{\delta z}{\delta y}$.

- (d) What are the conditions of unconstrained optimization for the function with one independent variable and more than one independent variables?
- (e) A consumer consumes two goods x_1 and x_2 . His utility function is given by $U = u(x_1, x_2)$ and the budget line is given by $B = x_1P_1 + x_2P_2$. Find out the conditions of consumer's equilibrium.

22P/1356

(Continued)

(4)

(6)

(iii) Write down two economic applications of matrix algebra. 2

Or

- (b) (i) Explain with examples any five properties of determinant. 5
 - (ii) Find the value of the following determinant :

(iii) What is idempotent matrix?

5. (a)

 (i) Show that the indifference curve representing the utility function of a consumer consuming two goods x and y is negatively slopped.

- (ii) Given the production function $Q = AK^{\alpha}L^{1-\alpha}$, find—
 - (1) average productivity of labour;
 - (2) average productivity of capital;
 - (3) marginal physical productivity of labour;
 - (4) marginal physical productivity of capital. 1+1+2+2=6

22P/1356

-

(Continued)

4

1

4

(7)

- (iii) What are the economic applications of first-order and second-order partial differentiations? 2+2=4
- (b) (i) Derive elasticity of substitution for C-D production function. 4

Or

(ii) Verify whether the Euler's theorem is satisfied or not for the following production function :

 $Q = L^{5/3} K^{-2/3}$

- (iii) Given the utility function, $U = u(x, y) = \log(x^2 + 4y^2)$, find the marginal utility of x and marginal utility of y. 2+2=4
- 6. (a) In a monopoly market, the AR and TC functions are AR = 100 2Q and C = 50 4Q + 2Q². The government imposes a specific tax of ₹ 8 per unit. Examine the effect of tax on equilibrium output, price and profit. 4+3+3=10

Or

(b) The demand functions of a monopoly in two different markets are given by $P_1 = 53 - 4Q_1$ and $P_2 = 29 - 3Q_2$

22P/1356

(Turn Over)

and the total cost function is C = 20 + 5Q, where $Q = Q_1 + Q_2$. Find—

- (i) equilibrium outputs Q_1 and Q_2 ;
- (ii) equilibrium prices P_1 and P_2 ;
- 6+2+2=10 (iii) maximum profit.
- 7. (a)
- (i) Maximize $Y = 5x_1x_2$, subject to $x_1 + 2x_2 = 8$ by applying Lagrange multiplier.

4

7

4

7

utility function, (ii) Given the U = 2 + x + 2y + xy and the budget constraint 4x + 6y = 94. Find out equilibrium level of x and y which will maximize total utility.

Or

- $Y = x_1^2 x_1 x_2 + 2x_2,$ (b) '(i) Minimize subject to $2x_1 + 4x_2 = 12$.
 - (ii) A producer desires to minimize his cost of production, C = 2L + 5K, where L and K are the inputs, subject to the satisfaction of the production function Q = LK. Find the optimum combination of L and K in order to minimize cost of production when output is 40.

* * *

22P-5000/1356

2 SEM TDC ECOH (CBCS) C 4